14 research outputs found

    HSP90 Inhibitors for IPF/COVID-19

    Get PDF
    Heat shock protein 90 (HSP90) is an important chaperone that assists the late stage folding of several proteins involved in cell survival in response to environmental stressors. The inhibition of HSP90 is followed by a complex modulation of the proteome and the kinome, that has proved beneficial in cancer and various neurodegenerative diseases. Additionally, accumulating literature suggests that HSP90 may be a key target during the development of pulmonary fibrosis and that its inhibition could serve as a new and exciting therapeutic approach. We have summarized the current evidence about HSP90’s role in Idiopathic Pulmonary Fibrosis (IPF), the results from preclinical studies on its inhibition and the intracellular signaling pathways involved, in a recent review article (Review). In this Article entry, we will introduce the main findings discussed in the review and focus on its translation and possible significance in the era of the SARS-CoV-2 pandemic

    Alcohol Increases Lung Angiotensin-Converting Enzyme 2 Expression and Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Subunit 1–Induced Acute Lung Injury in K18-hACE2 Transgenic Mice

    Get PDF
    During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, alcohol consumption increased markedly. Nearly one in four adults reported drinking more alcohol to cope with stress. Chronic alcohol abuse is now recognized as a factor complicating the course of acute respiratory distress syndrome. and increasing mortality. To investigate the mechanisms behind this interaction, we developed a combined acute respiratory distress syndrome and chronic alcohol abuse mouse model by intratracheally instilling the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-human angiotensin-converting enzyme 2 (ACE2) transgenic mice that express the human ACE2 receptor for SARS-CoV-2 and are kept on an ethanol diet. Seventy-two hours after S1SP instillation, mice on an ethanol diet showed a strong decrease in body weight, a dramatic increase in white blood cell content of bronchoalveolar lavage fluid, and an augmented cytokine storm, compared with S1SP-treated mice on a control diet. Histologic examination of lung tissue showed abnormal recruitment of immune cells in the alveolar space, abnormal parenchymal architecture, and worsening Ashcroft score in S1SP- and alcohol-treated animals. Along with the activation of proinflammatory biomarkers (NF-κB, STAT3, NLRP3 inflammasome), lung tissue homogenates from mice on an alcohol diet showed overexpression of ACE2 compared with mice on a control diet. This model could be useful for the development of therapeutic approaches against alcohol-exacerbated coronavirus disease 2019

    HSP90 Inhibition and Modulation of the Proteome: Therapeutical Implications for Idiopathic Pulmonary Fibrosis (IPF)

    Get PDF
    Idiopathic Pulmonary fibrosis (IPF) is a catastrophic disease with poor outcomes and limited pharmacological approaches. Heat shock protein 90 (HSP90) has been recently involved in the wound-healing pathological response that leads to collagen deposition in patients with IPF and its inhibition represents an exciting drug target against the development of pulmonary fibrosis. Under physiological conditions, HSP90 guarantees proteostasis through the refolding of damaged proteins and the degradation of irreversibly damaged ones. Additionally, its inhibition, by specific HSP90 inhibitors (e.g., 17 AAG, 17 DAG, and AUY-922) has proven beneficial in different preclinical models of human disease. HSP90 inhibition modulates a complex subset of kinases and interferes with intracellular signaling pathways and proteome regulation. In this review, we evaluated the current evidence and rationale for the use of HSP90 inhibitors in the treatment of pulmonary fibrosis, discussed the intracellular pathways involved, described the limitations of the current understanding and provided insights for future research

    Sex-Related Differences in Murine Models of Chemically Induced Pulmonary Fibrosis

    Get PDF
    We developed two models of chemically induced chronic lung injury and pulmonary fibrosis in mice (intratracheally administered hydrochloric acid (HCl) and intratracheally administered nitrogen mustard (NM)) and investigated male-female differences. Female mice exhibited higher 30-day survival and less weight loss than male mice. Thirty days after the instillation of either HCl or NM, bronchoalveolar lavage fluid displayed a persistent, mild inflammatory response, but with higher white blood cell numbers and total protein content in males vs. females. Furthermore, females exhibited less collagen deposition, milder pulmonary fibrosis, and lower Ashcroft scores. After instillation of either HCl or NM, all animals displayed increased values of phosphorylated (activated) Heat Shock Protein 90, which plays a crucial role in the alveolar wound-healing processes; however, females presented lower activation of both transforming growth factor-β (TGF-β) signaling pathways: ERK and SMAD. We propose that female mice are protected from chronic complications of a single exposure to either HCl or NM through a lesser activation of TGF-β and downstream signaling. The understanding of the molecular mechanisms that confer a protective effect in females could help develop new, gender-specific therapeutics for IPF

    Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19)

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties have been investigated in numerous studies. There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma

    Dietary Phytoestrogens Ameliorate Hydrochloric Acid-Induced Chronic Lung Injury and Pulmonary Fibrosis in Mice

    Get PDF
    We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction

    Melatonin for the Treatment of Sepsis: The Scientific Rationale

    Get PDF
    Sepsis affects 30 million people worldwide, leading to 6 million deaths every year (WHO), and despite decades of research, novel initiatives are drastically needed. According to the current literature, oxidative imbalance and mitochondrial dysfunction are common features of septic patients that can cause multiorgan failure and death. Melatonin, alongside its traditionally accepted role as the master hormonal regulator of the circadian rhythm, is a promising adjunctive drug for sepsis through its anti-inflammatory, antiapoptotic and powerful antioxidant properties. Several animal models of sepsis have demonstrated that melatonin can prevent multiorgan dysfunction and improve survival through restoring mitochondrial electron transport chain (ETC) function, inhibiting nitric oxide synthesis and reducing cytokine production. The purpose of this article is to review the current evidence for the role of melatonin in sepsis, review its pharmacokinetic profile and virtual absence of side effects. While clinical data is limited, we propose the adjunctive use of melatonin is patients with severe sepsis and septic shock

    Optimizing Antidotal Treatment with the Oral HSP90 Inhibitor TAS-116 Against Hydrochloric Acid-Induced Pulmonary Fibrosis in Mice

    Get PDF
    Exposure to high concentrations of hydrochloric acid (HCl) can lead to severe acute and chronic lung injury. In the aftermath of accidental spills, victims may be treated for the acute symptoms, but the chronic injury is often overlooked. We have developed a mouse model of acute and chronic lung injury, in which the peak of acute lung injury occurs on the day 4 after HCl exposure. We have also demonstrated that HSP90 inhibitors are effective antidotes when administered starting 24 h after HCl. In this study we examined the hypothesis that the novel oral HSP90 inhibitor TAS-116 can effectively ameliorate HCl-induced lung injury even when treatment starts at the peak of the acute injury, as late as 96 h after HCl. C57BI/6J mice were intratracheally instilled with 0.1N HCl. After 24 or 96 h, TAS-116 treatment began (3.5, 7 or 14 mg/kg, 5 times per week, p. o.) for either 2,3 or 4 or weeks. TAS-116 moderated the HCl-induced alveolar inflammation, as reflected in the reduction of white blood cells and total protein content in bronchoalveolar lavage fluid (BALF), overexpression of NLRP3 inflammasome, and inhibited the activation of pro-fibrotic pathways. Furthermore, TAS-116 normalized lung mechanics and decreased the deposition of extracellular matrix proteins in the lungs of mice exposed to HCl. Delayed and shortened treatment with TAS-116, successfully blocked the adverse chronic effects associated with acute exposure to HCl

    HSP90 Inhibitors Modulate SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation and Barrier Dysfunction

    Get PDF
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP activated (phosphorylated) IKBα, STAT3, and AKT and reduced the expression of intercellular junctional proteins, occludin, and VE-cadherin. HSP90 inhibitors (AT13387 and AUY-922) prevented endothelial barrier dysfunction and hyperpermeability and reduced IKBα and AKT activation. These two inhibitors also blocked S1SP-mediated barrier dysfunction and loss of VE-cadherin. These data suggest that spike protein subunit 1 can elicit, by itself, direct injury to the endothelium and suggest a role of HSP90 inhibitors in preserving endothelial functionality

    HSP70 Is a Critical Regulator of HSP90 Inhibitor Effectiveness in Preventing HCl-induced Chronic Lung Injury and Pulmonary Fibrosis in Mice

    No full text
    Rationale: Exposure to Hydrochloric acid (HCl) can provoke acute and chronic lung injury; because of its extensive use in the industry, accidental exposures occur and represent a threat to public health. Heat shock protein 90 (HSP90) is a chaperone involved in inflammation and fibrosis; its activity is inversely related to the levels of its co-chaperone HSP70. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury and pulmonary fibrosis in mice. Methods: C57BL/6J mice were intratracheally instilled with 2µl/g 0.1N HCl, and, after 24h, treated with 1) vehicle; 2) GGA, 200 mg/kg 3x/week per os; 3) GFT, 200 mg/kg 3x/week per os; 4) TAS-116, 7 mg/kg 5x/week per os; 5) TAS-116 + GGA; 6) TAS-116 + GFT. Molecular, functional, and histological outcomes were investigated 30 days after HCl. Results: GGA reduced HCl-induced alveolar inflammation, activation (phosphorylation) of ERK and HSP90, the deposition of Fibronectin, Elastin, Collagen and TGF-β, the histological evidence of fibrosis (Ashcroft score and NLRP3 staining), and lung dysfunction (i.e. Pressure-Volume loops, Elastance (Ers) and Resistance (Rrs)). GFT, alone, did not affect HCl-induced toxicity. TAS-116 alone blocked HCl-induced chronic lung injury and, when co-administered with GGA, resulted in an increased HSP70 levels and slightly improvement in molecular signaling and lung function. Conversely, GFT impaired the antidotal effects of TAS-116 resulting in persistent inflammation, activation of HSP90 and pulmonary fibrosis. Conclusions: TAS-116 represents a valid drug candidate for HCl-induced respiratory toxicity. HSP70 induction by GGA may represent a novel therapeutic strategy to potentiate the anti-fibrotic effects of HSP90 inhibitors. Supported by the CounterACT Program, National Institutes of Health Office of the Director (NIH OD) and the National Institute of Environmental Health Sciences (NIEHS) grant number U01ES030674
    corecore